

## **CEEGR 342 – Midterm 2 (100 points)**

*Multiple Choice (2 points each)*

1. A batch reactor is used to determine reaction order. If a plot of  $\ln(C/C_0)$  vs.  $t$  is the most linear, what order is this?

- a) 0<sup>th</sup>
- c) 2<sup>nd</sup>
- b) 1<sup>st</sup>
- d) 3<sup>rd</sup>

## 2. What does CSTR stand for?

- a) Continuously Stirred Tank Reactor
- b) Continuous Species Treatment Reactor
- c) Continuously Stable Tank Reactor
- d) Continuously Steady Tracer Reaction

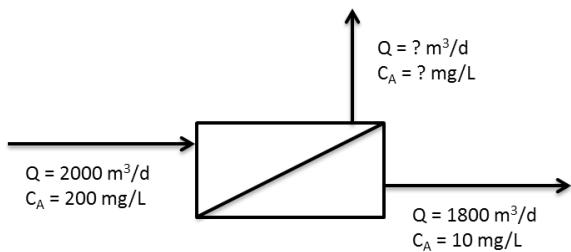
### 3. A batch reactor by definition

- a) Is at steady-state
- b) Has a first order reaction
- c) Has no inflow or outflow
- d) Operates faster than a PFR

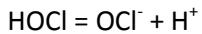
4. Given a maximum specific growth rate =  $5/d$  and saturation coefficient (concentration at half-maximum growth rate) = 60 mg substrate/L, estimate the observed growth rate at a concentration of 20 mg substrate/L.

### *Short Answer*

5. For a positive order reaction (non-zero), the volume requirement of a PFR is (less than/greater than) the volume requirement of a CSTR to achieve the same extent of reaction? (1 point)


6. Photosynthesis raises pH in aquatic systems because the organisms use dissolved  $\text{CO}_2$  (or  $\text{H}_2\text{CO}_3$ ) as their carbon source. Why does this raise the pH? In other words, what happens to the aqueous  $\text{H}^+$  and why? (2 points)

7. Write the correct solubility product equilibrium expression ( $K_{sp} = \dots$ ) for  $Hg_2Br_2(s)$ . The  $K_{sp} = 6.4 \times 10^{-23}$ , you should include the magnitude of this constant in your answer. (3 points)


8. Identify two 'natural sources' of carbonates in water. (2 points)

9. Biodegradation of PAH in a catch basin is observed to follow 0<sup>th</sup> order kinetics. The catch basin operates as a 'batch reactor' in-between clean-outs. During one analysis, the PAH's were initially at 15 mg PAH/kg solids but were reduced to 8 mg/kg after 1.5 months. During a second analysis they were reduced from 9 mg/kg to 1 mg/kg after 2 months. Estimate how long it would take to reduce PAHs from 20 mg/kg to 5 mg/kg. (6 points)

10. The following diagram describes a membrane system. There is no reaction. Calculate the unknown quantities. (4 points)

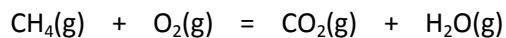


11. The equilibrium constant for dissociation of hypochlorous acid at 25°C =  $3.2 \times 10^{-8}$ . Its enthalpy change due to reaction = -89 kJ/mol rxn, its Gibbs free energy change due to reaction = +43 kJ/mol rxn. The reaction is shown below. Estimate the equilibrium constant at 10°C. (6 points)

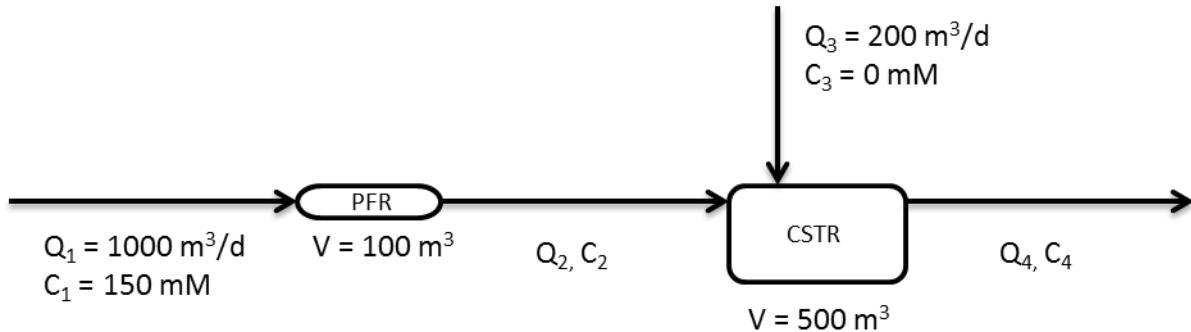


12. Calculate the mass of  $\text{FeF}_2$  (93.8 g/mol) that can be added to 10-L of water before it begins to precipitate. (7)

*Long Answer*


13. A 20-L carboy of lake water is initially at pH = 6.4, and has  $\text{HCO}_3^-$  concentration = 15 mM. Strong base (NaOH) is added to raise the pH to 11. What is the alkalinity after the pH is raised (i.e. at pH = 11)? Show all steps and units. (12 points)

14. An aqueous system is at pH=5.5, with  $\text{HCO}_3^-$  = 1.3 mM,  $\text{H}_2\text{CO}_3$  = 2.7 mM, and  $\text{CO}_3^{2-}$  = 0 mM. Determine if the system is at equilibrium using Gibbs free energy, not by comparing Q/K. If it is out of equilibrium, determine if the reaction will move in the direction written ( $\text{L} \rightarrow \text{R}$ ), or opposite to the direction written. Show all steps and units. (10 points)




15. A tank holds 250 m<sup>3</sup> of wastewater contaminated with 100 mmol/L Ag<sup>+</sup>. The wastewater also has 10 mmol/L SO<sub>4</sub><sup>2-</sup>. We will precipitate the silver (Ag<sup>+</sup>) down to 25 mmol/L by adding additional sulfate (SO<sub>4</sub><sup>2-</sup>). Calculate the total mass of iron sulfate (Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>; 400 g/mol) required. (15 points)

16. Natural gas is primarily methane (CH<sub>4</sub>). Calculate the mass of natural gas required to raise the temperature of a 1-kg iron griddle to 300°C assuming no heat is lost to the surroundings. The initial temperature of the griddle is 20°C. (12 points)



17. A PFR and CSTR are used in series as shown below. The same 1<sup>st</sup> order reaction occurs in each reactor, with  $k = 0.4/\text{hr}$ . Calculate the concentration of reactant 'A' out of the CSTR. Show all work and steps. (12 points)

